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 The purpose of this qualitative study was to investigate the conceptions of 

integrated STEM education held by in-service science teachers through the use 

of Photo Elicitation Interviews (PEIs) and to examine how, if at all, those 

conceptions were reflected in teacher-created integrated STEM curricula that 

include an engineering design challenge. Our findings suggest that different 

conceptual models of integrated STEM held by teachers lead to different ways of 

creating, developing, and writing integrated STEM curricula. Additionally, we 

found that the use of a STEM integration framework and a Framework for 

Quality K-12 Engineering Education, which guided the NSF-funded project and 

contextualized this study, were also reflected in the teacher-created curricula. 

While the process of developing the curricula was not examined, our findings 

indicate that teacher conceptions of integrated STEM and the frameworks that 

guided the curriculum development process play a significant role in what 

teachers decide to include and emphasize in units they create. 
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Introduction 
 

While policymakers and educators agree on the importance of improving K-12 STEM education through teacher 

preparation programs, professional development opportunities, and curricular resources, there remains debate 

about the nature of integrated STEM models (Bybee, 2013; Ring, Dare, Crotty, & Roehrig, 2017; Roehrig, 

Moore, Wang & Park, 2012). Thus, understanding the conceptions teachers hold regarding integrated STEM 

education is an important first step in implementing reforms that call for increased integrated STEM education 

in K-12 schools. In particular, it is imperative that K-12 science teachers develop an understanding of what 

integrated STEM education could look like in the classroom, as reform documents suggest that integrated 

STEM is most likely to be implemented in science classrooms (National Academy of Sciences, National 

Academy of Engineering, and Institute of Medicine of the National Academies [The National Academies], 

2007; NGSS Lead States, 2013). Without knowledge of teachers’ beliefs and understandings related to 

integrated STEM education, the probability that it will be used in a teacher’s classroom, or more specifically 

used effectively in a teacher’s classroom, is small (Roehrig et al., 2012). This study addresses the following 

research questions: (1) What are the important characteristics of integrated STEM education according to K-12 

science teachers as identified through their self-described conceptions of STEM?; and (2) How, if at all, do 

integrated STEM curricula developed by teams of teachers reflect the teachers’ conceptions of STEM? 

 

 

Literature Review 
 

Integrated STEM Education 
 

The benefits of integrated curricula, which draw from multiple disciplines in purposeful ways, have been well 

studied. Furner and Kumar (2007) suggest that using an integrated curriculum provides students with a highly 

relevant, less fragmented, and more stimulating learning experience than traditional disciplinary curricular 

approaches. Integration allows students to determine when to apply their knowledge and encourages them to 

examine relationships between multiple concepts resulting in more robust understandings of those concepts 

(Froyd & Ohland, 2005; Stein, Carnine, & Dixon, 1998). Other benefits to integrated curricula are that they are 

more student-centered (Czerniak, Weber, Sandmann, & Ahern, 2005), increase student retention (Crosling, 

Heagney, & Thomas, 2009), and improve students’ problem-solving skills (Smith & Karr-Kidwell, 2000). Thus, 

integrating content is an important aspect to consider when facilitating student learning in the classroom. 

 

STEM 

Teacher conceptions 

Curriculum 
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Because the nature of 21
st
 century jobs in STEM fields requires individuals to draw upon multiple disciplines, 

there is a critical need for K-12 students to develop the knowledge and skills necessary to do this. 

 

Bybee (2013) has detailed nine commonly accepted models conceptualizing the integration of STEM 

disciplines. These models have varying degrees of integration, ranging from STEM as a synonym for a single 

discipline (e.g., science) to STEM as representing the overlap and intersection of science, technology, 

engineering, and mathematics. Other definitions of integrated STEM education offer broader, more 

pedagogically-based definitions than the models offered by Bybee (2013). Breiner, Harkness, Johnson, and 

Kohler (2012) define the practice of STEM integration as the shift from traditional lecture-based classrooms to 

the implementation of pedagogy that involves more inquiry and problem-based learning approaches. Moore, 

Stohlman, Wang, Tank, Glancy, and Roehrig (2014a) define integrated STEM education as “an effort by 

educators to have students participate in engineering design as a means to develop technologies that require 

meaningful learning and application of mathematics and/or science” (p. 38). This definition of integrated STEM 

education specifically emphasizes the integration of engineering into science and mathematics classes. 

Similarly, many frameworks for STEM education have placed a strong emphasis on incorporating a strong 

engineering component in science disciplinary content and process; this strategy has the potential to increase 

both student learning (Moore et al., 2014a; National Research Council, 2011; 2012) and interest in STEM-

related careers (Guzey, Moore, & Harwell, 2016; Guzey, Moore, & Morse, 2016). Clearly, there are a variety of 

definitions and models of integrated STEM education. Bybee (2013) suggests that while it is not important that 

one model be chosen as the exemplar or that there be a one-size-fits-all definition, it is important that teachers, 

administrators, school districts, and policy-making agencies consider their own conceptions of integrated STEM 

to operate better as advocates for STEM at the local level. Teachers are then faced with the difficult task of 

determining what integrated STEM education means for them at a personal and practical level. 

 

 

Teacher Conceptions 
 

Research indicates that teachers’ conceptions of teaching influence their practice (Gow & Kember, 1993; 

Trigwell, Prosser, & Waterhouse, 1999). Because research has shown that different approaches to teaching are 

associated with different approaches to learning (Gow & Kember, 1993; Trigwell et al., 1999), how a teacher 

conceptualizes teaching can have a substantial influence on student learning in the classroom. For example, 

teachers who believe that teaching should be active, or include multiple forms of interaction with students, have 

higher student achievement in their classrooms compared to teachers who do not believe that active teaching is 

important (Rowan, Correnti, & Miller, 2002). Further, believing that learning should be facilitated rather than 

transmitted leads to deeper content learning for students (Kember & Gow, 1994). Teacher conceptions and 

beliefs become particularly important when considering educational reforms that require not only changes in 

instruction, but changes in the way one thinks about subject matter. 

 

Up until the early 2000s, STEM education was conceptualized simply as the four separate disciplines of science, 

technology, engineering, and mathematics (Sanders, 2008), similar to Bybee’s (2013) “quartet of separate 

disciplines” (p. 76). Since that time, however, STEM education has become more synonymous with integrated 

STEM education (Moore et al., 2014a; Sanders, 2008; The National Academies, 2007), something that more 

resembles Bybee’s (2013) “complementary overlapping across disciplines” (p. 78). This is a major shift that 

necessitates substantive changes in teachers’ conceptualizations of STEM (Asghar et al., 2012). This is of high 

importance, as teachers are less likely to alter their pedagogy or make fundamental changes to the nature of their 

instruction if their conceptions of teaching do not change (Kember & Kwan, 2000). Additionally, research has 

found that it is difficult to separate teachers’ conceptions of STEM content from teachers’ conceptions of what it 

means to teach STEM. For example, Ring et al. (2017) found that in-service science teachers conceptualized 

STEM content in eight distinct ways, but they increasingly supported their conceptions with pedagogical 

constructs as they developed an understanding of integrated STEM. This indicates that one’s conception of 

integrated STEM is not solely about content like the models proposed by Bybee (2013), but has pedagogical 

implications as well, similar to models proposed by Breiner et al. (2012) and Moore et al. (2014a). Thus, as 

teachers are being asked to implement integrated STEM curricula in their classrooms, it is important to 

understand how teachers conceptualize integrated STEM education with regard to both content and pedagogy to 

support them best in this task. 

 

 

Curriculum 
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Though educational theorists have debated how best to define the term curriculum (Jung & Pinar, 2015; 

Kliebard, 1989; Portelli, 1987), the commonly-used definition adopted here is a plan for learning as proposed 

by Taba (1962). This general definition allows for modifications to be made by educational professionals based 

upon their context (van den Akker, 2004). Curricula can also be divided into three forms: (a) intended – the 

visions and intentions of a written curriculum; (b) implemented – curriculum as interpreted and taught by its 

users; and (c) attained – the learning experiences and outcomes of the learners (van den Akker, 2004). This 

definition and these three forms of curricula are useful when considering curriculum analysis; for this study the 

focus was on intended curricula. 

 

Curriculum development is a critical component of teachers’ responsibilities (Clandinin & Connelly, 1992). 

Deciding what content should be taught (curriculum design), how it should be taught (curriculum construction), 

and when it should be taught (curriculum mapping) are all crucial decisions that must be made when developing 

new curricula (Remillard, 1999). Research has shown that how teachers conceptualize these aspects of curricula 

influences how they write curriculum and implement it (Brown, 2003; Cheung, 2000; van Driel, Bulte, & 

Verloop, 2008). However, current research concerning teachers’ development of integrated STEM lessons and 

curriculum units is limited; further, research connecting teachers’ conceptions of integrated STEM to curriculum 

writing is lacking. Guzey, Moore, and Harwell (2016) evaluated twenty teacher-developed, engineering-design-

based integrated STEM curriculum units using their self-developed STEM Integration Curriculum Assessment 

(STEM-ICA) tool, but this tool did not take into consideration teachers’ conceptions of STEM. Roehrig et al. 

(2012) examined the extent to which engineering was situated in teacher-developed engineering-integrated 

lessons, but again did not consider teachers’ conceptions of integrated STEM. Wang, Moore, Roehrig, and Park 

(2011) began to fill this gap in the research by exploring three teachers’ perceptions of integrated STEM 

practices, basing the work on teachers’ experiences in both writing and implementing engineering-integrated 

lessons in their classrooms. While the work of Wang et al. (2011) attempts to connect teacher perceptions and 

curricula, the focus of this study is primarily on connecting teachers’ beliefs to classroom practice (implemented 

curricula) rather than to a written curriculum product (intended curricula). To this end, the present study 

extends the work of Ring et al. (2017), which explored in-service science teacher conceptions of integrated 

STEM through the analysis of teacher-created representations, or conceptual models, of integrated STEM 

education and identified eight distinct models. This study aims to understand more fully these conceptions and 

identify key characteristics of STEM integration that may influence teachers’ curricular decisions. 

 

 

Methods 

 

Context 
 

Forty-five K-12 science teachers participated in three weeks of summer professional development as part of a 

large, five-year NSF project designed to promote K-12 integrated STEM education using both a STEM 

integration framework (Moore et al., 2014a) and a Framework for Quality K-12 Engineering Education (Moore, 

Glancy, Tank, Kersten, & Smith, 2014b). The STEM integration framework (Moore et al., 2014a) was used to 

help teachers better understand relationships between science, technology, engineering, and mathematics 

concepts and to consider ways science, technology, engineering and mathematics could be taught within the 

context of a single classroom. The Framework for Quality K-12 Engineering Education was introduced to help 

these science teachers better understand ways in which engineering could be integrated in their classrooms as 

science teachers often lack any experience with engineering. 

 

The data collected for this study were part of the third year of the funded project, where 21 of the participating 

teachers previously had participated for one or more years. The project’s guiding paradigm of STEM integration 

involves the merging of STEM disciplines to: (1) deepen student understanding of STEM disciplines, (2) 

broaden student understanding through exposure to socio-culturally relevant STEM contexts, and (3) increase 

interest in STEM disciplines (Moore, 2008).As part of the project, K-12 teachers created integrated STEM 

curricula for use in their classrooms, working in teams of one to three teachers alongside a classroom coach. The 

curricula created as part of this project were expected to include the components of STEM integration as defined 

by Moore et al. (2014a) and discussed explicitly during the professional development: (1) a motivating and 

engaging context; (2) an engineering design challenge that explores the engineering design process and 

engineering practices; (3) opportunities to learn from failure and to redesign; (4) mathematics and/or science 

content as main objectives for the activities; (5) student-centered pedagogies; and (6) an emphasis on teamwork 

and communication. One of the most distinctive curriculum requirements was the inclusion of a client letter. 

This letter was intended to provide a motivating and engaging context to help introduce the engineering design 

challenge in each unit. The teams of teachers chose to focus on one of three science content areas aligned to 
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their instructional responsibilities: physical, life, or earth science. During the summer professional development, 

these teams co-wrote drafts of a curriculum unit that they piloted with students enrolled in a STEM summer 

camp. Revisions were made to each curriculum during the school year as team members implemented it in their 

classrooms. Final revisions based on implementation were made and collected as part of the project’s overall 

requirements. 

 

 

Research Design 
 

This work employed a multiple case study design (Yin, 2014) contextualized within the aforementioned project. 

A subset of the teachers involved in the larger project comprised the three separate cases in this study. Each case 

was defined as a team of three teachers and the curriculum unit they co-developed. The teams of teachers were 

chosen for this study using criterion sampling (Patton, 2002). These criteria included completeness of the 

research data, including individual and team artifacts, as well as representation of each of the three science 

content areas. 

 

 

Data Collection and Sampling 
 

At the beginning of the school year following the summer professional development, all teachers participating in 

the NSF project were asked to draw models representing their conception of STEM integration. To understand 

these conceptions deeply, teachers additionally participated in individual 30-45-minute, semi-structured photo 

elicitation interviews (PEIs) (Lapenta, 2011). In these interviews teachers were asked to: (1) share and describe 

their model of integrated STEM; (2) analyze other conceptual models of integrated STEM based on the work of 

Ring et al. (2017); and (3) share ways in which they would change their model, if at all, after seeing other 

models. For the work presented here, analysis of the PEIs was limited to understanding key aspects of the 

individual’s own STEM conceptual model, as the focus of this study is how these conceptions are translated into 

curricular documents. 

 

Table 1. Case breakdown by curriculum and teacher participants 

Case Curriculum Overview Teacher 1 Teacher 2 Teacher 3 

1 Soccer 

Stadium 
Elementary 

(4th & 5th) 

Earth 

Science 

Students are contracted to help 

design an environmentally 

friendly soccer stadium using 

local resources while learning 

about renewable and 

nonrenewable resources, how 

they are processed, and the 

resultant environmental impacts. 

Josh 

Years in  

PD: 2 

Years  

Teaching:  

11-15 

K-5 Science 

Specialist 

Trey 

Years in  

PD: 3 

Years 

Teaching:  

0- 5 

General  

(5th grade) 

Kiera 

Years in  

PD: 2 

Years 

Teaching:  

0-5 

PreK-6 Science 

Specialist 

2 GMOs 
Middle 

School (7th) 

Life 

Science 

Students are contracted to help 

design a barrier that effectively 

prevents the cross-pollination of 

GMO plants with non-GMO 

plants in adjoining fields while 

learning about the scientific 

concepts associated with genetics 

and heredity. 

Billy 

Years in  

PD: 3 

Years  

Teaching:  

6-10 

6th Grade 

Honors Science  

Jean 

Years in  

PD: 1 

Years 

Teaching:  

6-10 

7th Grade 

Science 

Rick 

Years in  

PD: 1 

Years 

Teaching:  

0-5 

7th Grade 

Science  

3 Mechanical 

Claw 
Elementary 

(4th & 5th) 

Physical 

Science 

 

Students are contracted to design 

an electromagnetic arm as a 

replacement for typical arcade 

mechanical claw games while 

learning about electromagnets 

and magnetism. 

Allison 

Years in  

PD: 3 

Years  

Teaching:  

0-5 

Grades 4-5 

Science 

Specialist 

Holly 

Years in  

PD: 3 

Years  

Teaching:  

0-5 

Grades 4-5 

Science 

Specialist 

Melissa 

Years in  

PD: 1 

Years 

Teaching:  

0-5 

PreK-5  

Science 

Specialist 
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To select a high-quality sample, the first two authors read through the PEI transcripts to determine the level of 

completeness, quality, and clarity of the interviews. Interviews that were conducted with entire teams instead of 

with individuals, included off-script questions or too much input from the interviewer, missed key questions, or 

were too brief in teacher reflection were eliminated from the possible sampling pool. This process resulted in 

two teams from physical science and one team each from life and earth science. One of the physical science 

teams was selected due to higher quality interviews, leaving three teams of three teachers as the separate cases 

(Table 1). The final curricula created by these three teams were then collected to understand how these teachers’ 

conceptions were translated into a written curriculum document. 

 

 

Analysis 
 

Qualitative analysis was used to understand important characteristics of integrated STEM as identified by 

teachers, develop individual STEM conceptions profiles, determine the presence of identified characteristics in 

each curriculum, and identify connections between participants’ conceptions and the characteristics represented 

in their curriculum unit. Due to the heavy textual nature of the data, content analysis (Miles & Huberman, 1994) 

was used to frame our study of patterns of integrated STEM characteristics in both PEI transcripts and written 

curriculum documents. PEI transcripts were analyzed by the first four authors using inductive coding methods 

(Glaser & Strauss, 1967). Using the software Dedoose, one PEI exemplar was openly coded by the authors to 

identify initial codes and to assure the authors were calibrated in the way they used codes (Wasser & Bresler, 

1996). After developing an initial set of codes, the authors coded the remaining PEI transcripts in teams of two, 

adding codes as necessary. Discussion, first within and then across the pairs of authors, helped refine the codes, 

and constant-comparative methods (Corbin & Strauss, 2015) were used to collapse the codes into eight 

categories. These categories were determined to be characteristics of integrated STEM education and enabled 

the authors to construct STEM conception profiles for the individual teachers (Miles & Huberman, 1994). Once 

these eight categories were established, a final pass was made through the PEI data to confirm consistent 

assignment of the codes and categories both in terms of physical placement and usage. 

 

To account for any discrepancies in the numbers of codes used, frequency counts of these characteristics within 

the PEI transcript for each participant were calculated using an average count from the two coders, as the 

disparity in counts was not large. Because the participants’ length and depth of discussion varied, percentages of 

counts were used to better represent the emphasis each participant placed on these characteristics in their 

description of their conception of STEM integration. These percentages were then translated into levels by 

binning, using the conversion: 0% → 0, > 0 to < 10% → 1, > 10 to < 20% → 2, > 20  to < 30% → 3, > 30 to < 

40% → 4, and > 40 to 100% → 5. These were then used to create radar charts, visual representations of the 

teachers’ conceptions that aided in the development of the STEM conception profiles. These visual 

representations, in combination with direct quotes from teachers’ PEIs, helped to build an understanding of each 

teacher’s conception of integrated STEM, which we refer to as their STEM conception profiles. 

 

Analysis of the curriculum documents, as opposed to analysis of classroom implementation, was conducted 

based on the assumption that curriculum documents more accurately reflect how conceptions of integrated 

STEM were moved into practice without confounding factors, such as classroom management, impacting 

implementation (van den Akker, 2004). Using the eight characteristics found from analysis of the PEIs, the first 

and second authors deductively coded the three curriculum unit documents. This coding was done per lesson for 

each of the eight lessons within a curriculum unit. Similar to the PEI data, radar charts were created for each 

curriculum unit to visualize the characteristics present in the overall curriculum. The level of use of each 

characteristic was created in the same fashion as the teacher’s conception, which reflects the percentage of use 

throughout the entire unit. 

 

To understand how the conceptions of STEM integration were transferred from an internal conception to a co-

written curricular product, findings from the PEI and curriculum analysis of each case were compared. Within-

case analysis was conducted by first comparing the radar charts generated for each team member to determine 

what characteristics of conceptions overlapped and which did not. The radar chart generated for each curriculum 

unit was then compared to the STEM conception profiles from each participant in that case to determine areas of 

overlap and similar patterns. Finally, cross case analysis was conducted to identify similarities and differences 

between the cases to understand common themes. The focus of this analysis was to determine patterns found 

across the three cases that might be applicable to other similar cases. This was done by examining across all 

teachers, across all curriculum units, and across each case as a whole. 
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Findings 
 

Analysis of the PEI data revealed that teachers conceptualized important characteristics of integrated STEM 

education as being: (1) Connecting the disciplines - the ability of STEM to tie together three or more of the 

disciplines of science, technology, engineering, and mathematics; (2) Balance of science and engineering - 

equal emphasis on science and engineering in the classroom; (3) Engineering focus - centrality of engineering 

and/or use of the engineering design process; (4) Engineering as context - use of engineering to explicitly 

contextualize student learning of science, mathematics, and/or technology in the classroom; (5) Science focus - 

centrality of the science content and the teachers’ jobs in the classroom; (6) Mathematics and technology as 

tools/supports in STEM - the role of mathematics and educational technology in STEM to support classroom 

pedagogy and student learning; (7) 21st century skills - emphasis on the development of 21
st
-century skills such 

as problem solving, critical thinking, communication, and teamwork; and (8) Real world connections - emphasis 

on making connections to the real world as a way to provide relevancy and student engagement. These eight 

categories go beyond defining integrated STEM as content, addressing the need for pedagogical aspects to be 

considered as well. As part of this analysis, it was clear that teachers used the terms STEM and integrated 

STEM interchangeably, suggesting that as practitioners they equate the two. The sections that follow describe 

how these characteristics were represented in the each of the three cases. 

 

 

Case 1 - Soccer Stadium 
 

Teacher conceptions 

 

Figure 1 displays a visual representation of the conceptions of integrated STEM held by Josh, Trey, and Keira, 

each comprised of a unique combination of the eight characteristics. These images show places of overlap, but 

also areas in which the three teachers differ in their overall conception. 

 

 
Figure 1. Radar charts of the conceptions of integrated STEM held by the three teachers in Case 1. 

 

Josh, an elementary science specialist, felt that for STEM integration to occur, the engineering design process 

must be the priority (Engineering focus). This dominated his overall conception (Figure 1a). Specifically, he 

mentioned: 

 

We start with the problem and then we go through those steps of-we have our problem, we explore it, 

meaning we learn about it. We kind of do a little research on it. Then we start coming up with ideas to 

solve the problem. Then after that, we design something off of our idea then we tried it out to make it 

better and then we redesigned it. We try to go through that cycle. 

 

Engineering as a whole was emphasized in his conception (Engineering focus), often contextualizing the science 

content to give purpose (Engineering as context). A second highly present characteristic was Josh’s view of 

STEM as a way to connect to the real world and allow students to develop skills that they might need in their 

future careers, saying “I do try to talk to kids about that [careers]. This is what people do. This is jobs. This is 

something they do constantly all the time.” Clearly, Josh was concerned about students knowing that STEM was 

not just for school, which is represented in Figure 1a. Additionally, Josh felt that “... tech is like a tool that helps 

you research” and described the use of mathematics as “what you’re using here” to test a product. This view 

established the use of mathematics and technology as supports in integrated STEM, such that they helped 

students find solutions to engineering design challenges, but were not seen as integral content for students to 

learn in science class. 

 

Trey, the only general classroom teacher in our sample, recognized the need for a focus on science content 

during science time, but also saw the need to balance science and engineering, remarking, “So, I want to teach 

them [science and engineering] both ... kind of together, side by side ... however you look at it” (Figure 1b). The 

most important thing to Trey in bringing STEM to his classroom was the emphasis on developing skills through 
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a 4Cs (creativity, critical thinking, communication, and collaboration) model. Making sure there were 

connections between the four disciplines was important to him, though he struggled with mathematics in 

particular, often considering it more of a tool than a large component of STEM integration, stating “There’s 

definitely standards in [the curriculum] ... some math, recording data, and graphing data” (Figure 1b). 

 

Kiera, another elementary science specialist, was very aware of her limited use of technology and mathematics 

in her conception and implementation of integrated STEM, finding herself prioritizing engineering and the 

engineering design process (Figure 1c). 

 

I would think, well, what would be an interesting [engineering] design challenge. Then, after kind of 

deciding that, I go back to what’s the actual science content, where can I put in math? Technology is 

always just kind of the mystery piece. 

 

In this, she saw integrated STEM as a way to contextualize students’ learning of science using an engineering 

design challenge, which required the engineering design process. She specifically called out technology as a 

“mystery piece,” but it is clear that mathematics was a low priority as well. She recognized that the real-world 

aspect was a positive way to develop students’ skills, but that it offered a somewhat false sense of what the real 

world is like, making the comment “Kids are not ready for the real world, that’s why they’re in school.” 

 

 

Curriculum 

 

Soccer Stadium asked students to design and recommend a site for an environmentally friendly soccer stadium 

using local resources while learning about renewable and nonrenewable resources, how they are processed, and 

the resultant environmental impacts (Table 2). Soccer Stadium included many aspects relating to 21
st
 century 

skills – throughout the unit students worked in teams and used critical thinking skills to make decisions and 

solve problems. Beyond this, the curriculum was framed by lessons that focused on engineering and the 

engineering design process (Figure 2). In particular, there was an emphasis on STEM as a way to help students 

understand engineering as a career as well as its role in society. This curriculum was contextualized by an EDC 

that was presented in Lesson 1 and revisited throughout the unit. The unit presented a distinct and explicit 

dialogue woven between engineering practices and science concepts. For example, in the second lesson, 

students were charged with determining the differences between renewable and nonrenewable materials found 

in the region (science); this required students to use engineering practices to conduct tests, which helped 

determine each material’s suitability for its use in construction of the stadium (engineering). Though this 

dialogue was between engineering and science, it often surrounded unrealistic tasks for students, such as 

ultimately determining where the soccer stadium would be placed. Mathematics and technology were used as 

tools and supports, as opposed to foci, in this unit. The use of mathematics as a tool could be seen clearly in the 

second lesson where students explored the various renewable and nonrenewable resources using mathematics 

and technology as analysis tools for the testing of materials. 

 

 
Figure 2. Radar chart of the characteristics of integrated STEM found in the curriculum unit, Soccer Stadium 

(Case 1). 
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Table 2. Soccer stadium lesson summaries and codes assigned during analysis 

Lesson Summary Characteristics 

Lesson 

1 

Students analyze a letter from a client to understand the Engineering 

Design Challenge (EDC) and its accompanying criteria and constraints. 

They create a class concept map and brainstorm the parts of a stadium and 

the resources required to build it. 

Engineering as Context 

Engineering Focus 

 

Lesson 

2 

Students gather background information about renewable and 

nonrenewable materials found in the local region through discussion 

about the differences, through a station rotation to research different 

aspects of wood, concrete, and steel as common building materials, and 

through comparison of the strength of wood, concrete, and steel samples. 

Engineering as Context 

Science Focus 

Engineering Focus 

Math/Technology used as 

tools/supports in STEM 

21
st
 Century Skills 

Lesson 

3 

Students examine how forests, sand and gravel, and iron ore are processed 

into a usable form, supplementing their knowledge with video clips about 

processing wood, cement, and steel. Students also consider environmental 

impacts and the relationship between human activity and earth materials. 

Science Focus 

Math/Technology used as 

tools/supports in STEM 

Lesson 

4 

Students use background information from Lessons 2 and 3 to make a 

choice regarding the materials they want to use for the stadium’s roof, 

floor, and structure. 

Engineering Focus 

Math/Technology used as 

tools/supports in STEM 

21
st
 Century Skills  

Lesson 

5 

Students work in groups to learn about common renewable energy 

resources in the region: sunlight (solar power), wind (wind power), and 

water (hydroelectric power). Students examine how these resources are 

converted into usable electricity, supplementing their knowledge with 

video clips about the conversion of solar, wind, and hydropower, and 

consider the environmental impacts of resource processing. Students 

create a class Energy Resource Matrix. 

Science Focus 

Math/Technology used as 

tools/supports in STEM 

21
st
 Century Skills 

 

Lesson 

6 

Students test and compare voltage output of three different models of 

renewable power generators (a solar panel, a windmill, and a water 

wheel). Students collect and analyze data that will help inform their 

decision for the energy source in their stadium design. 

Engineering as Context 

21
st
 Century Skills 

Lesson 

7 

Students use maps of the region to determine the general availability of 

the renewable energy sources at three potential stadium sites. They 

compare seasonal and annual average availability using data tables. 

Finally, they use evidence-based reasoning to justify their choice for a 

stadium location and energy source. 

Balance of Science and 

Engineering 21
st
 Century 

Skills Real-World 

Connections 

Lesson 

8 

Students bring together everything they have learned about the stadium 

design challenge to make their design proposal recommendations. They 

create a product to communicate their recommendations for building 

materials, energy sources, and a site location. They use evidence-based 

reasoning while considering the criteria and constraints listed by the 

client. 

Engineering as Context 

Engineering Focus 21
st
 

Century Skills Real-

World Connections 

 

 

Comparison of conceptions and curriculum 

 

In comparing the conceptions of the three authors regarding the curriculum unit itself, it is evident that the ideas 

of Engineering as context, Mathematics and technology as tools/supports, and 21
st
 century skills were 

transferred from conception to product. Josh’s and Kiera’s conception of engineering as contextualizing science 

content learning and Trey’s idea that science and engineering should be balanced in the unit were realized in the 

final curriculum. The presentation of the EDC in the first lesson and its continual revisitation throughout the unit 

is evidence of the use of engineering as a way to situate science learning. While both science and engineering 
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were represented in most lessons throughout the unit, the connection between the two was clear only in two 

lessons, thus the low count of the Balance of science and engineering characteristic represented in Figure 2. 

Additionally, Trey’s and Kiera’s struggles to incorporate mathematics and technology into the curriculum were 

evident through the near absence of both disciplines in the unit. When mathematics and technology were 

utilized, it was to help students organize or display data or to make decisions about science content or 

engineering practices. Josh’s and Trey’s beliefs that an important aspect of integrated STEM is helping their 

students develop 21
st
 century skills is also evident in Figure 2. However, Kiera’s suggestion that school isn’t 

always “real world” was also evident in the unit as some of the decisions students were asked to make in 

relation to the EDC were not entirely realistic. 

 

 

Case 2 - Cross Pollination of GMOs 
 

Teacher conceptions 

 

Figure 3 displays a visual representation of the conceptions of integrated STEM held by Billy, Jean, and Rick. 

 

 
Figure 3. Radar charts of the conceptions of integrated STEM held by the three teachers in Case 2. 

 

Figure 3a shows that Billy, a 6
th

 grade Honors science teacher, believed that integrated STEM involves making 

connections between the four STEM disciplines, but he described an emphasis on science because “... 

obviously, my job is to teach the content science standards.” Engineering provided a context for that science 

learning, balancing the two content areas such that “The engineering part is really an awesome venue to teach 

the content standards while also helping them [students] develop engineering skills.” As a teacher who had 

participated in this project previously, Billy saw these two fields as supporting one another in his classroom 

where his students experienced high levels of engagement while learning a variety of 21
st
 century skills. 

Additionally, he saw mathematics and technology as tools used to support science learning, stating “The 

technology tools and the math analysis are sort of the, I guess, the tools that the kids will have to use to [learn 

science and engineering concepts and processes] successfully.” The visual representation of Billy’s conception 

(Figure 3a) clearly represents these priorities of including both engineering and science to develop 21
st
 century 

skills, while considering mathematics and technology as only supports or tools. 

 

Jean, a general middle school science teacher, acknowledged the importance of making connections among the 

STEM disciplines (Figure 3b), although she noted that integrating mathematics into her instruction was 

challenging and, “... always something we’re kind of working on.” She prioritized engineering and the 

engineering design process, explaining her conception of integrated STEM in the following way: 

 

... within engineering, you have technology, science, and the math within as a smallest part; but really 

it just means that, like, it’s connected to all of them, you know. So it’s just basically kind of ... they’re 

[technology, science, and math] all embedded within the engineering challenge…. 

 

Jean noted that STEM integration increased student engagement and provided many opportunities to learn 21
st
 

century skills in real-world contexts. She stated, “I just think engineering is so relevant. There’s jobs out there in 

engineering that we don’t even know yet and so to get kids thinking like engineers - that’s an aspect of being a 

scientist that we need to do as much as possible.” Jean’s excitement about the possibilities of engineering being 

relevant to students was what drove her conception. 

 

Rick, another general middle school science teacher, placed emphasis on the engineering design process (Figure 

3c), describing his model as “There’s still a process embedded into it, so some way that I can incorporate the 
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science, technology, engineering, math along with this spinning wheel of the process. The design process.” The 

“flow” of the process was most important to him as it provides students with an engaging context in which to 

learn, which was done through “the incorporation of the client.” Rick, who was new to the project, lacked 

confidence in his understanding of integrated STEM, often clarifying that he was still learning, which he 

attributed to “being in the very young stages of understanding a true integrated STEM model.” He was 

optimistic about the opportunities to help students make connections to the real world using engineering as a 

context for their science learning, which was seen as supporting the engineering design process. 

 

 

Curriculum 

 

Table 3. The Cross Pollination of GMOs lesson summaries and codes assigned during analysis 

Lesson Summary Characteristics 

Lesson 

1 

Students read a client letter asking them to prevent cross pollination of 

Genetically Modified Organisms (GMOs) and non-GMO crops in farmers’ 

fields. Students learn the basics of GMOs and discuss their relevance in 

large and small groups. Students read about, discuss, and reflect on the 

ethics of GMOs.  

Engineering as Context 

Engineering Focus 

 

Lesson 

2 

Students review cells and the location of genetic material in the nucleus 

with a group modeling activity. Students complete a DNA extraction lab 

using strawberries. Students build a DNA model by using origami. Finally, 

students learn about DNA structure (base pairing) and function through 

direct instruction. 

Science Focus 

Lesson 

3 

Students learn about and discuss genes, alleles, and traits. Students also 

explore heritable traits by comparing their own traits to those of their 

parents and their peers. 

Science Focus 

Math/Technology used 

as tools/supports in 

STEM 

21
st
 Century Skills 

Lesson 

4 

Students learn about reproduction and the processes by which living things 

inherit genetic material. Students explore inheritance, asexual and sexual 

reproduction, and plant fertilization through pollination in a stations 

activity. 

Science Focus 

Engineering as Context 

 

Lesson 

5 

Students review reproduction and DNA inheritance. Students learn about 

heredity and the probability of inheritance using Punnett Squares. 

Science Focus 

Engineering as Context 

Lesson 

6 

Students learn about genetic engineering and model genetic splicing and 

restriction enzymes using a paper plasmid, scissors, and tape. Students 

complete a pGLO gene splicing lab to reinforce the methods by which 

genes can be spliced to create a GMO with a trait that was not previously 

present. 

Science Focus 

Engineering as Context 

Lesson 

7 

Students practice word problems associated with determining appropriate 

scale factors in various scenarios. Students look at a model of the fields 

being used in the EDC, measure the length and width of the GMO field and 

the non GMO field in the model, and determine the area. Students 

determine the overall scale factor used for the model based on average field 

size. 

Engineering as Context 

Math/Technology used 

as tools/supports in 

STEM 

Real-World Connections 

Lesson 

8 

Students review the EDC, including the client’s criteria and constraints. In 

teams, students design a scaled prototype of their cross-contamination 

prevention strategy using the data from their research. Students test, 

redesign, and retest their prototypes. Students create a presentation of their 

prototype for their client, which includes justification in the contexts of 

genetics technologies, heredity, and GMOs. 

Engineering as Context 

Engineering Focus 21
st
 

Century Skills 
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Cross-Pollination of GMOs asked students to design a barrier that effectively prevented the cross-pollination of 

GMO plants with non-GMO plants in adjoining fields while learning about the scientific concepts associated 

with genetics and heredity (Table 3). The Cross-Pollination of GMOs unit clearly presented engineering as the 

context in which to learn science content, the primary focus of the majority of the lessons (Figure 4). Students 

were presented with an EDC in the first lesson through a letter from their client and addressed the challenge in 

the final lesson. This client letter was used to provide “a context within which to learn the content standards for 

genetics.” However, the vast majority of the material between the first and final lessons focused on science 

content. The only connection to engineering during these days was in the form of a closure activity in which 

students were asked to reflect upon how the science content in the lesson related to the client problem. 

Engineering was mostly used as a way to frame the need for learning the science concepts, but the EDC was not 

necessarily directly connected to the science content, thus the lack of Connecting the disciplines and Balance of 

science and engineering in Figure 4. During this unit, mathematics was used meaningfully only twice. In lesson 

five, mathematics was used to calculate the probability that an offspring would inherit parental traits in a science 

lesson disconnected from the EDC, and in the final two lessons scaling was used to help determine the size and 

cost of the students’ prototypes. In this way, mathematics was seen as a tool for helping students analyze science 

concepts and/or make decisions related to the EDC. Technology was rarely used by students in the unit, but it 

was suggested in the curriculum unit as an aid to support the teacher in various classroom pedagogies - for 

example, as a way to gain access to videos and images related to DNA and heredity. 

 

 

 
Figure 4. Radar chart of the characteristics of integrated STEM found in the curriculum unit Cross-Pollination 

of GMOs (Case 2). 

 

 

Comparison of conceptions and curriculum 

 

In considering the overlap of the teachers’ conceptions of integrated STEM with the curriculum, Engineering as 

context, Science focus, and Mathematics and Technology as tools/supports in STEM were the conceptions most 

fully reflected in the curriculum, which notably does not include all teammates’ conceptions. For instance, both 

Billy and Jean recognized the importance of using multiple disciplines, and Rick placed an emphasis on design 

process. Neither of these characteristics was apparent in the curriculum. The client letter introduced at the 

beginning of the unit framed students’ learning of the genetics content by an EDC, a nod toward Billy’s 

conception that STEM utilizes engineering as a context for science content learning. This was also supported by 

bookending the unit with an EDC that was introduced in lesson one and completed in the final lesson. The 

obvious emphasis of the unit on science content supports Billy’s conception that integrated STEM units in 

science classrooms should focus primarily on science content. The curriculum lacked much evidence of 

mathematics and technology, reflecting the conceptions of integrated STEM held by the three teachers, where 

these were viewed as supportive tools. This can be seen in the loose connection of both mathematics and 

technology to the science content in the written curriculum. Additionally, while all three teachers felt that 

teaching 21
st
 century skills was important, this conception was minimally present within the curriculum. 
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Case 3 - Improving the Mechanical Claw 
 

Teacher conceptions 

 

 
Figure 5. Radar charts of the conceptions of integrated STEM held by the three teachers in Case 3. 

 

Figure 5 displays a visual representation of the conceptions of STEM held by Allison, Holly, and Melissa, 

which show various areas of overlap and similarities. Figure 5a shows the obvious emphasis that Allison, an 

elementary science specialist, placed on the requirement of integrated STEM to connect the four disciplines 

explicitly in some way, shape, or form, including an EDC. She described that “... the different areas of STEM 

are all connected to each other and they kind of create this bigger picture of what STEM is. So, you can’t have 

STEM without them.” She recognized the limitations of the classroom and that mathematics in particular was 

challenging to incorporate into her conception and her teaching. Allison stated, “You have science and 

engineering standards together ... and then math, kind of, if you can get it in, it goes in.” Allison also felt that 

STEM integration offered many other connections for students, such as developing real-world and 21
st
 century 

skills, which overall was good for their development as the future workforce, stating, “I like that STEM does 

incorporate real world problem-solving, and working in groups, and communicating. That helps students 

practice real world skills that they’re going to need once they leave school even if it’s not a standard.” Figure 5a 

reflects the strong emphasis on the connection between the disciplines for students to learn these types of skills. 

 

Holly, also an elementary science specialist, noted that originally she believed integrated STEM should focus on 

the science content more than anything else, saying, “I am the science teacher, not anything else, so sometimes 

getting that math incorporated [is difficult].” She stated that she had moved away from this conception, to focus 

on the connections among the four disciplines (Figure 5b), describing her current conception: 

 

In the center of [STEM integration], you have an engaging context and in order to reach the engaging 

context you have to move between math, science, technology, and the engineering design process 

interchangeably and all these pieces are supposed to be roughly about the same size because each one 

holds the same amount of importance in order to achieve the overall STEM. 

 

Despite this vision, she recognized her struggle to integrate mathematics and technology into her STEM 

instruction, “I’m focusing on ways to incorporate math as well as the technology,” but overall saw integrated 

STEM as good for students because of their heightened engagement in instructional activities. As can be seen in 

Figure 5b, Holly’s conception of integrated STEM placed a strong emphasis on connecting the disciplines of 

science, technology, engineering, and mathematics using mathematics and technology as tools to support the 

learning of science and engineering. Also an elementary science specialist, Melissa described her conception of 

STEM as needing the connection of all four disciplines and the inclusion of an EDC (Figure 5c). Though she 

admitted she struggled to incorporate mathematics and technology, she saw these as important, stating, “I don’t 

think, I mean, you can’t have - in my opinion - engineering without science and math.” There was an obvious 

tension between her desire to incorporate these aspects and confidence in her ability to do so. She believed that 

integrated STEM was more than just a buzzword, such that it required, “redesign, creativity, failing, and 

teamwork ... because I think you need all of those.” Melissa’s conception embraced the idea that while 

integrated STEM required the clear connection and seamless transition between the disciplines, it was more than 

learning content. 
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Curriculum 

 

Improving the Mechanical Claw asked students to design an electromagnetic arm as a replacement for typical 

arcade mechanical claw games while learning about electromagnets and magnetism (Table 4). 

 

Table 4. Improving the mechanical claw lesson summaries and codes assigned during analysis 

Lesson Summary Characteristics 

Lesson 

1 

Students are introduced to the EDC through analysis of a client letter. 

Students work with their groups to create group norms that will be used 

throughout the unit. 

Engineering as Context 

Engineering Focus 

21
st
 Century Skills 

Lesson 

2 

Students are given a premade electromagnet to use during structured 

play time. While exploring the electromagnet, students are asked to 

think about the different ways you can change it (number of batteries, 

number of coils, gauge of the wire, type of battery, etc.). Students make 

a class list of these variables and vote to determine which variable will 

be tested in the next lesson. 

Engineering as Context 

Science Focus 

21
st
 Century Skills 

 

Lesson 

3 

Students discuss what constitutes a fair experiment, what tools are 

needed to collect or analyze data, and how the data should be 

organized. In groups, students test the previously selected variable 

(number of coils in the electromagnet) and graph their data. Groups 

develop claims supported by evidence to summarize the findings of 

their experiment. 

Connecting the 

Disciplines 

21
st
 Century Skills 

Engineering as Context 

 

Lesson 

4 

Students review the list of variables from Lesson 2 and decide on 

another variable to test. In groups, students build an electromagnet then 

test it three times, collecting their data in a data table and then graphing 

it using Plot.ly. Using Skitch, students annotate their graph showing (1) 

what they tested and (2) what conclusions they can draw from that data. 

Students present their data to the class. 

Connecting the 

Disciplines 

21
st
 Century Skills 

Engineering as Context 

 

Lesson 

5 

Students create a plan for their electromagnet design. They design their 

electromagnet and test it to see how many washers it can pick up. 

Students use their data to justify their design decisions and learn about 

other groups’ designs in a Gallery Walk. 

Connecting the 

Disciplines 

21
st
 Century Skills 

Engineering as Context 

Lesson 

6 

Students are introduced to the client’s need to determine which 

materials would work best to be used with the toys that will be found 

inside the electromagnet arm machine. Students determine which 

materials are magnetic, first using a permanent magnet and then using 

their electromagnet. 

Engineering as Context 

Science Focus 

Math/Technology used 

as tools/supports in 

STEM 

21
st
 Century Skills 

 

Lesson 

7 

Students redesign their electromagnet to make it work best with the 

material they chose (during the previous lesson) for the toy prizes in the 

game. Students create a video presentation for the client, justifying their 

designs and any changes they made to it. 

Connecting the 

Disciplines 

21
st
 Century Skills 

Engineering as Context 

Lesson 

8 

Students review electromagnetics, variables, data tables, and graphs and 

take a post-test on Electricity, Magnetism, Electromagnets, Variables, 

and basic Engineering Design Processes. 

Connecting the 

Disciplines 

Math/Technology used 

as tools/supports in 

STEM 

 

As can be seen in Figure 6, connecting the disciplines was emphasized in the Improving the Mechanical Claw 

unit. Engineering and science were explicitly interwoven to create a fine balance between the EDC and the 
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science concepts learned in this unit. Additionally, technology was consistently incorporated via various apps to 

allow students to further their understanding of the science content and show what they learned. Mathematics 

was often paired with technology via digital graphing tools and was used during decision making and reporting 

required of the students. An example of this emphasis on the connections of the four disciplines of STEM is 

illustrated in lesson four. In this lesson students conducted experiments to explore how different variables affect 

electromagnetic strength (science). During their experiment, students were required to use mathematics to 

analyze and interpret data (mathematics). Students were then given a client memo asking students to report 

their data back to the client (engineering) by “app-smashing” a graphing app called Plot.ly and an annotation 

app called Skitch (technology). The real-world connections established in the unit were strategically designed to 

engage students through the expansion of the required client letter into regular client memos to the students. 

This feature went above and beyond the curriculum requirements of the PD and seemed to be a way for the 

teachers to remind the students of the real-world context of their learning. Throughout the unit, high priority was 

placed on teamwork, communication, and the use of reasoning to solve problems (21st century skills). 

 

 
Figure 6. Radar chart of the characteristics of integrated STEM found in the curriculum unit Improving the 

Mechanical Claw (Case 3). 

 

 

Comparison of conceptions and curriculum 

 

In comparing the three authors’ conceptions of integrated STEM to the Improving the Mechanical Claw 

curriculum, it is evident that the ideas of Connecting the disciplines and 21
st
 century skills were mobilized from 

conception to product by this team. All three of the teachers had described that all four disciplines of STEM 

should be emphasized in STEM curricula, so it is not surprising that their curricular unit reflected just that. What 

is surprising is that all three teachers had expressed their concern in making explicit connections to mathematics 

and technology, but their curriculum made extensive use of both of these areas. These were often used in 

concert with one another in addition to connections with science and engineering. This was evident in the 

obvious attention that was paid to weaving the four disciplines together in three of the lessons in the unit. 

 

 

Cross-Case Analysis 
 

Cross-case analysis revealed several patterns across the cases. These included patterns across the teachers’ 

conceptions and across the curriculum units, as well as general patterns of translation of the teachers’ 

conceptions into the curricula. 

 

 

Viability of multiple conceptions of STEM 

 

Teachers recognized that their own conception of integrated STEM was influenced by their teaching assignment 

and even acknowledged that others might have alternative conceptions that were equally valuable. For example, 

Kiera was aware that integrated STEM might vary in form or definition depending on one’s teaching assignment 

(e.g., science versus mathematics) or the age of their students. Allison was also aware that what STEM 
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integration looks like in practice might change based on teaching assignment, understanding that a science 

teacher would likely prioritize science content over engineering. In addition, Holly noted that her conception 

had changed over the course of several years, indicating her belief that conceptions can change over time. It was 

evident that these teachers understood that their conceptions of integrated STEM are not static - that they are 

impacted by various factors. In looking across the curricula, the viability of multiple conceptions of integrated 

STEM is inherent in that the three curricula emphasized different characteristics (Figure 7). While each 

curriculum was developed as an integrated STEM unit, Soccer Stadium placed a high priority on 21st century 

skills and engineering, Cross-Pollination of GMOs emphasized engineering as the context in which to teach 

science, and Improving the Mechanical Claw focused on the use of engineering to contextualize the learning of 

21st century skills. 

 

 
Figure 7. Radar charts of the three curriculum units found in Cases 1-3. 

 

 

Tensions with technology and mathematics 

 

Analysis of the PEIs revealed that technology and mathematics were often viewed as supports or tools to either 

(1) help students understand science concepts or (2) make decisions about EDCs. It was evident that teachers 

found it less important to teach new mathematics content or utilize technology meaningfully in their integrated 

STEM units than it was to use these disciplines as aids in supporting learning of science content or in addressing 

the engineering design challenge. This resulted in mathematics being used in the curricula as a tool for data 

analysis and measurement related to science or engineering activities. Simultaneously, some teachers recognized 

the importance of using mathematics and technology and, as in the case of Melissa, attributed their discomfort 

with teaching mathematics as contributing to their hesitancy in teaching new mathematics content. Similarly, 

technology was not used often innovatively in the curricula, but as a way to replace direct instruction and 

introduce science content, most often through video clips (Tables 2, 3, and 4). The exception of this occurred 

when all three teachers on the curriculum writing team strongly believed in the necessity for explicit connection 

between the disciplines, which happened in only one case (Case 3). This particular conception of integrated 

STEM, held by all three team members in Case 3, appears to have led to a curriculum that fully embraced all 

four disciplines of STEM despite the teachers’ shared discomfort in incorporating mathematics and technology. 

 

 

Relationships between characteristics of Integrated STEM 

 

Cross-case analysis of the PEIs and curricular units revealed that relationships existed among the eight 

characteristics of integrated STEM. Teachers who identified science as being most important to them because 

their primary job was that of science teacher (Science focus) often utilized engineering or the engineering design 

process as a way to contextualize the learning of science content in their classrooms (Engineering as context). 

This can be seen in both Billy’s and Josh’s conceptions of STEM, as well as the curricula they developed. Billy, 

whose view of integrated STEM was highly science focused, felt that using engineering as a context was a good 

way to engage his students in the learning of science content. Similarly, Josh felt that science content could be 

incorporated most authentically in his classroom through his use of the EDP. It was also evident that connecting 

the disciplines tended to be acknowledged as an ideal way of implementing integrated STEM; however, 

enacting this conception in the written curricula was evidenced in only one curriculum unit (Case 3 - Improving 

the Mechanical Claw). 

 

It is evident that the units all presented a science focus, which is not surprising given that the intention was for 

these units to be used in science classrooms (Figure 7). Although the science focus in the Cross-Pollination of 

GMOs (Case 2) was more apparent than the other two units, it was still present in both Soccer Stadium (Case 1) 

and Improving the Mechanical Claw (Case 3). There is also evidence that the three units used engineering as a 
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way to contextualize the science content. For example, a client letter explaining the engineering design 

challenge for the unit was described at the beginning of all three units. This letter was revisited throughout the 

units’ lessons, reminding students of their tasks. This also provided evidence that the requirements of the 

professional development (i.e., the inclusion of a client letter) impacted the teachers’ writing of the curricula. 

 

Engineering as context and Real-world connections occupied separate yet overlapping positions in both the 

teachers’ conceptions and the curricula. The teachers emphasized the importance of connecting content to the 

real world in their individual conceptions (Real-world connections). When translating this characteristic into a 

written curriculum, it appears to have taken the form of the required client letter, which was used to 

contextualize student learning in an EDC. In Cases 1 and 2, the curricula also included other opportunities to 

engage students in making real-world connections (i.e., practice problems that presented real-world problems 

for content learning). However, despite these other opportunities, real-world connections were most often 

represented in the written curricula by the use of a client letter and the EDC to contextualize student learning 

(Engineering as context). 

 

21
st
 century skills and/or Real-world connections tended to occupy a prominent position in teachers’ conceptions 

of integrated STEM and, taken together, these two frequently dominated the teachers’ conceptions. This may 

have been because 21
st
 century skills and Real-world connections seemed to be compatible with each of the 

other six characteristics of integrated STEM as they were seen as supplemental to content instruction, providing 

avenues to incorporate good pedagogical practices. This idea was often highlighted when teachers considered 

the impacts of integrated STEM on student learning in their classrooms and their motivation for teaching 

integrating STEM. For example, Josh, Jean, and Allison felt that teaching integrated STEM was an excellent 

way to prepare students for the workforce by teaching them 21
st
 century skills (critical thinking, problem-

solving, teamwork, and communication). Rick and Kiera felt integrated STEM was a way to engage students 

through the use of real-world contexts. In the three curricula, applying the content of the unit to real-life 

situations (often within the context of the EDC) and to the students’ lives (outside of the school day) was 

emphasized. For example, students were asked frequently to reflect on how the content of the lessons they were 

learning applied to the real-world problem presented in the EDC. 

 

 

Translating conceptions into written curricula 

 

In looking across the three cases, generally the characteristics identified as important to integrated STEM in the 

conceptions of the teams of three teachers were aligned to the characteristics present in their curriculum units. 

This likely was due to the fact that the individual team members had similar general conceptions due to their 

shared experiences in the summer professional development. However, some conceptions of individual team 

members were better aligned than others. For instance, Alison, Holly, and Melissa (Case 3) shared the dominant 

conception that integrated STEM required the explicit connection among the STEM disciplines; their 

curriculum exemplified this extremely well. Individual conceptions of integrated STEM held by the teachers in 

Case 1 and Case 2 were similar, but less aligned than the conceptions of the teachers in Case 3. In Case 1, there 

were noticeable differences between the teachers’ conceptions regarding the discipline that should be most 

emphasized in the unit - engineering or science. This resulted in a unit that tended to emphasize both disciplines, 

but the explicit connections between science and engineering were missing within the lessons. In Case 2, Rick 

emphasized the engineering design process, while both Billy and Jean noted the importance of making 

connections between disciplines. However, the final curriculum unit appears to best represent Billy’s conception 

of integrated STEM compared to either Jean’s or Rick’s, as the unit is highly focused on science content, 

contextualized by an EDC as opposed to focusing on the centrality of engineering or the engineering design 

process. 

 

 

Discussion and Limitations 
 

Eight characteristics were recognized as being important components of integrated STEM education to these 

teachers: (1) Connecting the disciplines; (2) Balance of science and engineering; (3) Engineering focus; (4) 

Engineering as context; (5) Science focus; (6) Mathematics and technology as tools/supports in STEM; (7) 21
st
 

century skills; and (8) Real-world connections. In addition to these eight characteristics, several of the teachers 

suggested in their PEIs that there are limitations to integrating STEM in the classroom. These limitations were 

defined as time (both to plan and the amount of time to implement) and money. Because these limitations are 

not unique to STEM integration and tend to be limitations for all teachers, this was not reflected in the eight 
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components listed above. However, this is an area of STEM integration that lends itself to further research, 

especially regarding how integrated STEM curricula are implemented in the classroom. 

 

Each team of teachers in this study held unique and complex understandings of integrated STEM, and these 

conceptions were reflected in the curricula they developed. Individually, the teachers tended to have conceptions 

driven by one (or more) of the eight characteristics above. These primary characteristics, whether content-driven 

or pedagogically-driven, guided the overall conceptions of the individuals. It is clear that some teachers highly 

valued the engineering components (e.g., Josh) or science content (e.g., Billy), others the need to explicitly 

connect between all disciplines represented by the STEM acronym (e.g., all members of Case 3), and still others 

who viewed integrated STEM as a new form of pedagogy to teach students skills (e.g., Todd). This complexity 

in teachers’ conceptions reflects the variety of definitions of integrated STEM found in the literature (Breiner et 

al., 2012; Bybee, 2013; Moore et al., 2014a;). Despite this, teachers acknowledged that their own conception 

was not the only conception of integrated STEM. This resulted in the teams needing to negotiate conceptions if 

differences existed. This negotiation resulted in curricula that were amalgamations of the teachers’ individual 

conceptions. The less aligned the teams of teachers’ conceptions were (Case 1 and Case 2), the less the teachers’ 

individual conceptions were representative of their individual voices in the curriculum. 

 

In addition to the teachers’ conceptions, evidence also existed of the influence of the professional development 

in the written curricula. This is in alignment with findings in all three of the units, as an EDC was presented at 

the beginning of the unit and typically completed in the last lesson. This reflects the professional development’s 

guiding STEM integration framework and its emphasis on the use of a client letter to introduce an EDC and 

provide a motivating and engaging context (Moore et al., 2014a; Moore et al., 2014b). The client letter also 

served as a means for teachers to make real-world connections for their students. Additionally, the curricular 

units emphasized the process of design and the ideas of teamwork and communication that are central to the 

professional development’s quality K-12 engineering education framework (Moore et al., 2014b). The content-

specific breakout groups during the professional development (e.g., physical science, earth science, life science) 

also may have impacted the teachers’ conceptions as there was some variation in the time spent emphasizing 

different components of and pedagogies related to integrating STEM in the classroom. 

 

Several other factors may have impacted not only the individual teachers’ conceptions, but their curricula. The 

first is the amount of experience the teachers had in the professional development. For example, in Case 2 it is 

possible that Billy’s experience in the project (3 years) caused Jean (1 year) and Rick (1 year) to default to him 

in the curriculum writing process, causing the curriculum to better reflect Billy’s conception of integrated 

STEM. This may reflect a certain level of confidence that teachers about their own conception of integrated 

STEM. The second factor is that the science content for which the curricula were written may have led to 

differences in the teams’ abilities to integrate all four STEM disciplines. While physical science seemed to lend 

itself well to the incorporation of an EDC and the integration of STEM (Case 3), earth science (Case 1) and life 

science (Case 2) seemed to be more challenging in this regard. A larger study looking at more curricula from 

these disciplines would be necessary to understand this more fully, but others have made the case that physical 

science lends itself better to the inclusion of engineering (Moore et al., 2014b; Guzey, Moore, & Harwell, 2016; 

Wang et al., 2011). 

 

 

Implications 
 

In a constant effort to improve science and integrated STEM education, this work will help administrators, 

teacher educators, and educational researchers understand the needs of K-12 teachers who are expected to teach 

integrated STEM. This study expands and elaborates upon previous work (Ring et al., 2017) to better 

understand the complexity of teacher conceptions of STEM integration and how they are represented in 

integrated STEM curricula. We found that teachers equated the terms STEM and integrated STEM, likely 

related to their position as practitioners who are constantly thinking about their practice. Our findings suggest 

that different conceptual models of integrated STEM held by teachers lead to different ways of creating, 

developing, and writing integrated STEM curricula. While the process of developing the curricula was not 

examined in this study, our findings indicate that teacher conceptions of integrated STEM play a significant role 

in what they decide to include and emphasize in units they create. This supports the body of literature 

suggesting that how teachers conceptualize content, as well as how and when content should be taught, 

influences curriculum development (Brown, 2003; Cheung, 2000, van Driel et al., 2008). This is important to 

understand when administrators and state-level evaluators think about what integrated STEM curricula look like 

when conceptualized, written, and implemented. 
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One of the key pieces to this study was the fact that, as part of the grant-funded project, all teacher participants 

were expected to have certain components in their curricula. How those components are emphasized, though, is 

how the teachers were able to actualize their conceptions of integrated STEM education, working as a team to 

do so. If teachers are expected to work in teams, similar to those described here, there must be an understanding 

by all that integrated STEM may not mean the same thing from person to person. Negotiations of personal 

conceptions must take place before being able to talk coherently with others about their conceptions. The ability 

to negotiate these conceptions appeared to play a role in the overall design and representation of integrated 

STEM within the team-created units, which may additionally play a role in the quality of the units. While these 

findings do not necessarily translate directly to classroom practice, they do indicate that the way teachers 

conceptualize integrated STEM is evident in their curriculum development. Further study is needed as to how 

these conceptions are enacted in the classroom, as it is possible that the individual conceptions may be more 

apparent in individual practice compared to a co-written curriculum. 

 

Additionally, it is possible that the eight conceptions identified by Ring et al. (2017) and the eight characteristics 

of integrated STEM identified in this paper may exist on a continuum from conceptions and characteristics of 

STEM that result in less effective integration of the STEM disciplines to more effective integration. This may 

have contributed to the complexity of teachers’ conceptions of integrated STEM, where certain characteristics 

that might seem to contradict one another could actually coexist (e.g., seeing the importance of mathematics and 

technology for integration, but only using them as tools or supports). While there was evidence of this in this 

study, it was not the focus of the study and further analysis of the data must be conducted to determine the 

validity of this claim. If this is the case, it would be important for researchers, administrators, and practitioners 

to consider these continua to meet the goals of integrating STEM in K-12 education. 
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