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Abstract 
 

The concept of multiple representations of functions and the ability to make translations among representations 

are important topics in secondary school mathematics curricula (Moschkovich, Schoenfeld, & Arcavi, 1993; 

NCTM, 2000). Research related to students in this domain is fruitful, while research related to teachers is 

underdeveloped. This research looks in fine-grained ways at the nature of understanding exhibited by 59 pre-

service mathematics teachers as they approached four problems that called for translations between 

representations of functions. Teachers’ written and verbal responses were examined according to the extent to 

which they utilized essential constructs of process and object perspectives. Findings suggest that teachers 

exhibited three conceptions – flexible, disconnected or constrained. Specifically, teachers demonstrated: (1) 

constructs of both perspectives and operated within algebraic and graphical representations, (2) constructs of 

both perspectives, but not transitional enough to link them across problems, or (3) constructs of one perspective 

and did not operate within algebraic and graphical representations. 

 

Key words: Cartesian Connection, Functions, Object and Process perspectives, Representations, Translations, 

Algebra, Graph. 

 

Introduction 

 

Romberg, Fennema, and Carpenter (1993) assert, “functions are one of the most powerful and useful notions in 

mathematics” (p. 1), a view that reflects the beliefs of the mathematics and mathematics education communities 

(Cooney, Thomas, Beckman & Lloyd, 2010; Dubinsky & Harel, 1992; Kleiner, 1989; Lacampagne, Blair & 

Kaput, 1993; Lloyd, Herbal-Eisenmann & Star, 2011; Moschkovich, Schoenfeld & Arcavi, 1993; NCTM, 2000, 

2006, 2009; Sfard 1991, 1992). Teachers, students, mathematicians and scientists have related functions to 

algebraic representations, algebraic expressions, correspondence, dependency, graphical representations or 

ordered pairs. In view of this, Kleiner (1989) regards the concept of functions as a “tug of war between two 

elements, mental images: geometric and algebraic” (p. 282). This “tug of war” between the graphical and 

algebraic representations of functions is essential in one’s pursuit to understand this domain. Particularly, 

understanding functions is marked by one’s ability to (1) perceive functions in multiple ways and (2) move 

flexibly among various representations as one attempts to solve problems (Moschovich, Schoenfeld, & Arcavi, 

1993).  

 

Extant literature related to perceptions of functions is plentiful (e.g., Breidenbach, Dubinsky, Hawks & Nichols, 

1992), while limited information exists about the nature of knowledge needed to move flexibly or make 

translations between representations of functions (Romberg, Carpenter & Fennema, 1993; Schoenfeld, 1987). 

Moreover, this body of literature is usually restricted to instructional strategies for K-12 students (e.g., Star & 

Rittle-Johnson, 2009) even as secondary pre-service mathematics teachers leave teacher education programs 

lacking an in-depth understanding of this domain (Even, 1990; Norman, 1993; Tirosh, Even & Robinson 1998). 

Accordingly, the concerns of this study are as follows.  

 

 What is the nature of knowledge exhibited by teachers as they attempt problems that aim to call 

for translations; and  

 

 What forms of knowledge may promote or inhibit teachers’ attempts in making translations? 

 

                                                           
*
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Representations of Functions 

 

Functions and graphs represent one of the earliest points in mathematics at which a student uses one symbolic 

system to expand and understand another (Leinhardt, Zaslavsky, & Stein, 1990). Yerushalmy and Schwartz 

(1993) contend that multiple representations “allow students to use a rich set of operations, some of which 

operate on functions symbolically and some of which operate on functions graphically, which builds a deeper 

and richer understanding of the mathematics” (p. 42). In recognizing the important role that multiple 

representations play in students’ mathematics development, the National Council of Teachers of Mathematics 

(NCTM, 2000) emphasizes that students should be able to: (1) create and use representations to organize, 

record, and communicate mathematical ideas; (2) select, apply, and translate among mathematical 

representations to solve problems; and (3) use representations to model and interpret physical, social, and 

mathematical phenomena. Similarly, leading researchers in mathematics education have recognized multiple 

representations as a central idea in learning algebra (Lacampagne, Blair, & Kaput, 1993; NCTM, 2001, 2008).  

The three prominent ways in which functions are represented in secondary school mathematics are tabular, 

algebraic and graphical representations (Moschkovich et al., 1993).   

 

Researchers suggest that students usually learn ideas related to functions by first operating within the algebraic 

representation and then proceeding to the graphical representation (Leinhardt, et al., 1990; Romberg, 1993; 

Yerushalmy & Schwartz, 1993). In spite of the fact that this manner of instruction is not often thought to hinder 

the development of an understanding of the correspondence between algebraic and graphical representations, 

students and teachers encounter cognitive obstacles in this domain (Blume & Heckman, 1997; Chiu, Kessel, 

Moschkovich, Muñoz-Nuñez, 2001; Dreyfus & Vinner, 1989; Dufour-Janvier, Bednerz & Belanger, 1987; 

Even, 1990, 1993; Goldenberg, 1988; Knuth, 2000; Lesh, Post & Behr 1987; Lloyd & Wilson, 2002; Markovits, 

Eylon, & Bruckheimer, 1988; Moschkovich, 1999; Norman, 1992; Schoenfeld, Smith III, & Arcavi, 1993; 

Schwartz & Dreyfus, 1995; Stein, Baxter & Leinhardt, 1990; Vinner, 1989). In order for this sense-making to 

take place, “more systematic identification is needed of the forms of understanding that are required to see and 

use the correspondence between the patterns in the structure of an algebraic expression and the features of its 

graphical representation” (Schoenfeld, 1987, p. 243).  

 

The Issue of Correspondence 

 

The ability of one to demonstrate an understanding of the correspondence between representations characterizes 

a translation. Janvier (1987) defines the translation process (or “between-system” mappings) as a psychological 

process involved in going from one mode of representation to another. For instance, from y = x + 3, one can 

gain (or interpret) meaning of the slope and y-intercept. Specifically, one can determine that the slope is positive 

1 and the y-intercept is 3, since the equation is in slope-intercept form (y = mx + b, where m is the slope and b is 

the y-intercept). This information implies that the corresponding graphical representation should be an 

increasing line with a slope of 1, which intersects the y-axis at the point (0, 3). This process of making sense or 

gaining meaning from one representation in light of another representation is referred to as interpretation 

(Leinhardt et al., 1990). In essence, as one interprets information within algebraic and graphical representations, 

one must continuously view these representations in one of two ways: process or object perspective. For the 

process perspective the “focus is on the x and y values and the relationship between them, on the variables in an 

equation that stand for those numbers, or on the sets of individual points in the Cartesian plane, that collectively, 

constitute lines” (Moschkovich et al, 1993, p. 79). For the object perspective, the focus is on the associations 

between the values within a functional relation (e.g., movements or positioning of a graph). Competence of 

translations consists of being able to switch from constructs of process perspective, which entail viewing a line 

(or an equation) as a set of individual points that are related in a fixed way (ordered pairs), to constructs of 

object perspective, which entails viewing a line (or an equation) as an entity that can be manipulated as a whole 

(Moschkovich et al., 1993).  

 

 

Methods 
 

This research looks in fine-grained ways at the nature of understanding exhibited by 59 pre-service mathematics 

teachers as they approached 4 open-ended problems (see Figure 1) adopted from Moschkovich, Schoenfeld and 

Arcavi (1993) that called for translations.  

 

Using the following graph, solve problems 1-4. Please show all work. 
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Figure 1. Four open-ended problems 

 

1) The following list includes the equations of the two lines. Match each line with its equation. 

  y = 2x + 6 y = 2x - 2 y = - 2x - 2 y = - 2x + 6 

2) Find the coordinates of points A, B, C, and D, knowing that the line segments CD and EF are  

 parallel to the y-axis.  

3) If the x-coordinate of point E is 5, find its y-coordinate and the coordinates of point F.  

4) Find the lengths of segments EF, CD, and AB.  

 

For each problem, pre-service teachers were asked to explain their solution methods. The problems required 

teachers to perform translations between algebraic and graphical representations and to operate within both 

process and object perspectives. For instance, problem 1 required the participants to consider specific aspects of 

the graphical representation, which highlight basic structural features of linear functions. Participants were 

asked to focus on features of the lines as objects (object perspective) and determine how such information from 

the graph aids in determining appropriate equations. For instance, one could ask the following questions: Where 

does each line cross the y-axis? Is the slope of the line positive or negative?  

 

Problems 2 and 3 can be solved by using the appropriate equations from problem 1. In order to solve the 

problems, participants must demonstrate an understanding of the Cartesian Connection, “[a] point is on the 

graph of the line L if and only if its coordinates satisfy the equation of L” (Moschkovich et al., 1993, p. 73). For 

instance, in order to determine the coordinates of point C for problem 2, participants can substitute 0 for ‘x’ 

(process perspective), since point C is the x-intercept of the line (object perspective), in the equation y = -2x –2. 

This process yields a value of –2 for ‘y’. Consequently, the coordinates of point C are (0, -2). As information 

from both the graphical representation (e.g., point C is an x-intercept) and algebraic representation (e.g., 

substituting 0 for ‘x’ in the equation) is used, solving the problem requires one to switch between 

representations and perspectives. Similar procedures could be performed to determine coordinates for points A, 

B, D, E and F.  

 

Problem 4 required the participants to determine the lengths of segments of EF, CD and AB. Participants could 

arrive at an answer by using information within the graphical or algebraic representation. The answer could be 

determined by computing the distances between the endpoints of the line segments, which involves components 

of the graphical representation. The distance between A (0, 6) and B (0, -2) is 8. This same information could be 

obtained from the algebraic representations by noting the y-intercepts (6 and –2) of the equations. Problems of 

this type emphasize the linkages between information within the graphical and algebraic representations and can 

be used to encourage students to switch back and forth between perspectives where it is useful.  

 

 

Participants  

 

The prospective mathematics teachers were solicited from four northeastern universities. All participants were 

seniors in a teacher education program or students in a professional certificate program. Most of the participants 

were female and in their early twenties. The average overall grade point average (GPA) of the participants was 

3.45, while their overall GPA in mathematics was 3.31. The average number of credit hours in mathematics 

courses taken by participants enrolled in undergraduate teacher education programs was also 33, while the 

average number of credit hours (including math methods course) in education courses was 18. All participants 
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had participated in pre-student teaching experiences. None of the participants had begun student teaching, and 

all were enrolled in required mathematics methods courses. Thus the findings reflect these prospective teachers’ 

knowledge gained during their course work, but before they started teaching.   

 

 

Data Collection and Analysis 

 

Data for this study were collected in two phases. In the first phase, the participants completed open-ended 

problems. In the second phase, 10 of the 59 pre-service teachers were interviewed. These ten participants who 

attended the researcher’s university were asked to clarify their survey responses and to respond to additional 

questions designed to assess their knowledge. 

 

Responses were examined to determine whether they embodied constructs of process perspective, object 

perspective or both. For instance, if within a response, a participant presented ideas that reflected that of the 

process or object perspective, then such portions of the response were respectively coded as process or object. 

Other segments of the response were analyzed in a similar manner.  

 

After coding each response, responses were categorized as pure process, pure object, hybrid or neither. In cases 

when a participant did not present evidence of either process or object perspective such responses were 

categorized as neither. Responses within this category were not necessarily incorrect; instead they could not be 

interpreted according to either perspective. The categories of responses are summarized in Table 1. 

Categorizations of responses did not reflect whether they were right or complete – only the approach attempted. 

 

Table 1. Categorizations of Teachers’ Responses 

Categorizations Explanations of Categorizations 

Pure Process Ideas of a response reflect that of process perspective 

Pure Object Ideas of a response reflect that of object perspective 

Hybrid Ideas of a response reflect that of both process and object perspectives 

Neither A response does not embody constructs of either process or object perspective 

 

The following example illustrates this approach. The example includes one participant’s response to the first 

problem of the questionnaire. Looking at the two lines, we see that they have a “downward” slope as you move 

from left to right. This implies a negative slope, so we can eliminate the first two choices as the equations of the 

two lines [object perspective]. The upper line, which I called l, intersects the y-axis above the origin so its y-

intercept must be positive. Of the remaining choices, only one fits this description which is y = -2x + 6 [object 

perspective]. Similarly, the lower line, which I called L, intersects the y-axis below the origin so its y-intercept 

must be negative. So, the only remaining choice, y = -2x –2, makes sense [object perspective].    

 

According to the coding of the participant’s response, this response was categorized as pure object. This 

categorization was based on the participant’s sole utilization of object perspective constructs while solving the 

problem. A second analysis of the responses was completed to further understand teachers’ conceptions in this 

domain. In particular, the responses of each teacher were traced from problem 1 to problem 4. Responses were 

examined to determine the extent to which teachers (1) moved between constructs of process and object 

perspectives, (2) linked information regarding constructs of process and object perspectives or (3) operated 

within one perspective.  

 

 

Results and Discussion 
 

Table 3 displays the categorizations of responses. Of the 236 responses obtained, 69 (29%) solely embodied 

constructs of process perspective (pure process), 92 (39%) solely embodied constructs of object perspective 

(pure object), 47 (20%) embodied constructs of both process and object perspectives and 28 (12%) embody 

neither constructs of process nor object perspective.  
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Table 3. Categorizations of Responses (Problems 1-4) 

Categories of 

Teachers’ 

Responses 

Problems 1-4, Questionnaire A 

Problem 1 Problem 2 Problem 3  Problem 4 

 

Total 

Pure Process  6  0  44  20  70 (30%) 

Pure Object 48  10 2  34  92 (39%) 

Hybrid 3 38  6  1  47 (20%) 

Neither 2 11 7 4 27 (12%) 

Total 59 59 59 59 236 (100%) 

 

 

Pure Object, Pure Process, and Hybrid  

 

Based on the information for Problem 1 in Table 3, a majority of pre-service teachers considered specific 

aspects of the graphical representation and or highlighted basic structural features of linear functions as they 

solely demonstrated constructs of object perspective. For instance, one pre-service teacher, Bernice presented 

the following:  

 

DE: y = -2x+6. I knew from the graph that DE had a negative slope (because as x gets bigger y gets smaller) and 

a positive y-intercept (y-intercept is above the x-axis). Y = -2x + 6 is the only y = mx +b (m=slope, b = y-

intercept) that fits. 

 

CF: y = -2x –2. I knew from the graph that CF had a negative slope and a negative y-intercepts (y-intercept is 

below the x-axis). Y= -2x –2 is the only y =mx +b that fits this description. Bernice’s solution method involved 

recognizing the sign of the slopes and the positioning of the y-intercepts of the lines. Bernice demonstrated an 

understanding of the negative slope when she noted that lines have a negative slope when “x gets bigger, y gets 

smaller” as you read a line from left to right. An understanding of the positioning of the y-intercepts was 

demonstrated when she noted that an intercept is positive when it is located “above the x-axis” and negative 

when it is located “below the x-axis.” Bernice connected this notion to information within the function relation y 

= mx+b, where ‘m’ is the slope and ‘b’ is the y-intercept. Bernice demonstrated an understanding of these 

values as she appropriately designated that line DE represents y = -2x+6 and line CF represented y = -2x-2. Due 

to these characteristics of her solution method, this response was categorized as pure object.  Pre-service 

teachers presented a smaller percentage of solution methods that were categorized as pure process. For instance, 

one pre-service teacher, Annie, solely demonstrated constructs of process perspective (pure process) in the 

following response.  

 

 
Figure 2. Annie’s Response, problem 1 

 



228        Bannister 

When interviewed, Annie provided the following explanation of her solution method: “I did a table of values. 

From the table of values I found out from the various equations that’s given on top. Substituted it and found the 

one that would match the line with the equation”. Annie’s solution method heavily relied on constructs of 

process perspective and emphasized an understanding of Cartesian Connection (Moschkovich et al., 1993) as 

she utilized her table of values to determine the appropriate equation for each graph. Fewer teachers presented 

solution methods that embodied constructs of both process and object perspectives (hybrid). For instance, Annie 

presented the following: I looked for a negative slope, and then matched the x and y intercepts. 

 

0 = 2x+6 0 = 2x-2 0 = -2x –2 0 = -2x+6 

-6 = 2x 2 = 2x 2= -2x -6 = -2x 

x = -3 x = 1 x = -1 x = 3 

 

Annie’s solution method focused on aspects of the line (e.g., suggesting that the lines have negative slopes) and 

the points in the Cartesian plane that made up the lines (e.g., finding x-intercepts of each equation). Focusing on 

aspects of the line with respect to either slope or y-intercept highlight characteristics of object perspective, while 

focusing on the equations as a means in which to determine points on the line is an aspect of process 

perspective. Due to these characteristics of this solution method, this response was categorized as hybrid.  

A very small percentage of pre-service teachers presented solution methods that did not embody constructs of 

either process or object perspective (neither). For instance, one pre-service teacher presented the following 

response. 

 

 
Figure 3. Teacher’s Response (Neither) – Problem 1 

 

Since the teacher did not provide any work, it was unclear how he or she determined the answer. The 

mislabeling of the axes made it even more difficult to make sense of this response. For instance, on the positive 

portion of the x-axis the teacher placed 6 before 5. Also, the teacher labeled point B as (0, -1) when according to 

the equation that the teacher chose (by placing CB under y = -2x-2), B would be (0, -2). Moreover, it seems that 

a graph of line ED was provided in the bottom portion of his or her response, which did not coincide with the 

equation selected by the teacher. In particular, the equation y = -2x+6 suggested that the y-intercept is (0, 6), 

while the graph provided by the participant suggested that the intercept is (0, 12). The flaws presented within the 

teacher’s work were consistent with findings of Schoenfeld et al. (1993) regarding a student’s conception of 

algebraic and graphical representations of functions. Such flaws may suggest that the teacher did not understand 

that ‘b’ of the functional relation y = mx+b represents the y-intercept. It seems that the teacher may have 
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considered the ‘b’ as the x-intercept, since the teacher labeled the x-intercept of line ED as (0, 6), which is the y-

intercept. Due to the vagueness of this response, this response was categorized as “neither.”  

 

Flexible, Non-and Constrained Conceptions  

 

A second examination of teachers’ responses rendered similar findings of Moschkovich, Schoenfeld and 

Arcavi’s (1993) analysis of two students’ responses regarding the problem set presented in Figure 1. Findings 

indicated that the students demonstrated a conception characterized by students’ demonstrations of constructs of 

process and object perspective, but failure to link such information. A similar in-depth analysis of teachers’ 

responses embodied comparable aspects. As teachers completed the tasks they demonstrated three conceptions – 

flexible, disconnected and constrained. A flexible conception was characterized by moving flexibly between 

constructs of process and object perspectives. A disconnected conception was characterized by teachers’ 

demonstrations of constructs of process and object perspectives, but failure to link such information. A 

constrained conception was characterized by teachers’ tendency to operate within the constructs of one 

perspective. The categories of conceptions are summarized in Table 2. 

 

Table 2. Categorizations of Teachers’ Conceptions 

Categorizations Explanations of Categorizations 

Flexible Constructs of process and object perspectives are 

highlighted within the responses 

Disconnected  Constructs of process and object perspective are 

highlighted but are not linked within the 

responses 

Constrained Constructs of one perspective are highlighted 

within the responses  

 

Teachers moving flexibly (at least once) between constructs of process and object perspectives as they solved 

the problems characterized flexible conceptions. For instance, one teacher, Evelyn, wrote the following for 

problem 1.  

 

Line ED is y = -2x+6. The basic form of al line is y = mx+b, where m is the slope and (0, b) is the y-intercept. 

ED has a positive y-value at its intercept and a negative slope, so it must be y = -2x+6. Line FC is y = -2x –2 

since it has negative slope and a negative y-value at its intercept.  

 

Evelyn’s solution method involved recognizing the sign of the slopes of the lines and the positioning of their y-

intercepts. She also demonstrated an understanding of the components of ‘y = mx + b’. Due to these 

characteristics of her responses, this response was categorized as pure object. Evelyn flexibly moved between 

constructs of process and object perspective as she completed the remaining problems. For instance, she 

presented the following solution method, which embodied constructs of process perspective, for problem 2.  

 

At C, y = 0, -2x+-2=0 

      -2x-2=0 

   -2x=2 

    x = -1 

 

So, C is (-1, 0). It would appear that CD is vertical. If that is true, then D is (-1, 8),  

x = -1   y = -2(-1) +6 

   y = 2 + 6 

  y = 8   

 

Disconnected conceptions were characterized by teachers demonstrating both process and object perspectives as 

they completed the problems – but not linking appropriate information regarding the perspectives in order to 

answer certain problems. For instance, one teacher, Katie, wrote the following for problem 1: 

Both have negative slope, so that determines the direction of the lines, and the y-intercepts are found by 

estimation on graph, only 2 choices y = -2x –6 and y = -2x–2. 

 

Katie provided the following explanation of the above response: 

 

So for problem one, we had to figure our the equations of two lines and I pretty much just used the 

slope and intercept. So if you look at the parallel lines you could tell where about each of them 
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intersect the y-axis. So for the first one I said it has to have a positive intercept and then the other one 

has to have a negative intercept. So that gives you clues whether you need a plus or a minus in your 

intercept form. And then the other thing I did was just look at the actual slope and you can tell that the 

slope has to be negative in this case. So I ruled out the first two you had to go with the second two 

equations.  

  

Katie’s responses highlight constructs of object perspective as she refers to the direction and positioning of the 

lines. Although Katie accurately determined the appropriate equations by using this information, she failed to 

exhibit an understanding of the information these equations afforded as she attempted to determine coordinates 

of points C and D. For instance, she presented the following responses for problem 2: 

 

Point A (0, 6) because it is the y-intercept 

Point B (0, -2) because it is the other y- intercept. 

I do not think the other points can be determined from the given information.  

 

When interviewed Katie provided the following explanation of her response.  

 

A and B you can find because from their equations you know what the intercepts are and so…. A would 

be (0, 6) and B would be (0, -2) and the other two are C and D. For C and D I would say you can’t find 

very easily because you don’t know how far over they are going or how far up. I mean for C you can 

find the ‘x’ – just knowing that it is on the intercept. It will be 0. But you wouldn’t know what the ‘y’ is.  

 

Katie acknowledges that ‘b’ within y = mx+b represents the y-intercept. This recognition represents a construct 

of object perspective. It seems that this information did not suggest that the coordinates of (0, 6) or (0, -2) also 

satisfied y =-2x +6 and y = -2x –2, respectively. Her failure to link this information leads her to suggest that the 

‘y’ coordinate of point C is unobtainable. The understanding exhibited within problem 2 is interesting 

considering Katie moved beyond constructs of object perspectives as she determined the coordinates for points 

E and F. She presented the following:  

 

Pt. E      E (+5, -4)  

y = -2x +6        

y = -2(5) + 6 = -10 +6 = -4 (y coordinate of E) 

 

Pt. F      F (5, -12)  

 y = -2x – 2 

 = -2(5) – 2      

 = -10 – 2 = -12 (y coordinate of F) 

 

We already determined the equations of the two lines. Using these, with x = 5, we can solve for y. Since point F 

is one the same vertical line as pt. E, we know it also has an x value of 5. Thus, we can again substitute 5 into 

the equation of the line.  

 

Katie’s solution method for problem 3 demonstrated an understanding of the Cartesian Connection, “in order for 

a point to be on a line it must satisfy the equation of the line” (Moschkovich, et al., 1993). Most important, she 

demonstrated constructs of process perspective for problem 3 – but did not utilize or coordinate this information 

to solve problem 2. Teachers demonstrating one perspective as they solved the problems characterized 

constrained conceptions. For instance, one teacher, Marie, who accurately identified the equations in problem 1 

by utilizing constructs of object perspective, presented the following response for problem 2: 

You would not be able to determine the coordinates for A, B, C and D because there were no coordinates given 

on the graph at all. We know that pt a would have an x value of 0 and a y value less than pt. D, but we don’t 

know for sure what it would be. This is what we know for sure:  

 

A (0, y1) y1  6  y-int for the equation 

B (0, y2) y2  negative  -2  y-int of the equation  

C (x1, 0) x1  negative 

D (x2, y3) [x2 and y3]  both negative 

 

beyond that we can’t make any assumptions. 

 

For problem 3 she presented the following: 
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Since E is (5, y1) we know by looking at the graph that F is (5, y2) since we know B’s coordinates are at (0, -2), 

E appears to be at (5, [-]3).  

 

Although Marie had access to the equations of the lines, she did not exhibit an understanding of the 

relationships between the graphical and algebraic representations. For instance, she inappropriately determined 

the y-coordinate of E by mere approximation. An appropriate y-coordinate for E could be obtained by 

substituting the given x-coordinate of E into the equation, y = -2x +6. This proposed method embodied 

constructs of process perspective; constructs that Maria did not demonstrate.  

 

 

Concluding Remarks 

 
The purpose of this study was to illustrate the nature of knowledge exhibited by pre-service mathematics 

teachers as they approached problems that call for translations. As prospective teachers completed the problems, 

they (a) moved back and forth between process and object perspectives, (b) infrequently demonstrated 

constructs of process and object perspectives, and (c) solely demonstrated constructs of object perspectives. A 

second analysis of data, which aimed to determine the ways in which prospective teachers demonstrated or 

failed to demonstrate translations, highlighted three conceptions – flexible, disconnected and constrained. With 

respect to flexible conceptions, prospective teachers demonstrated facets of constructs of process and object 

perspectives. Fundamentally individuals with flexible conceptions illustrated translations between algebraic and 

graphical representations. With respect to disconnected conceptions, prospective teachers demonstrated 

constructs of process and object perspectives, but failed to interpret information regarding both perspectives and 

or representations. For instance, Katie exhibited this when she failed to coordinate process perspective 

constructs of the algebraic representations within her solution method to determine appropriate coordinates for 

‘C’ and ‘D’. This breakdown in her solution method led her to suggest “you can’t find [C and D] very easily 

because you don’t know how far over they are going or how far up. I mean for C you can find the ‘x’ – just 

knowing that it is on the intercept. It will be 0. But you wouldn’t know what the ‘y’ is”. With respect to 

constrained conceptions, prospective teachers demonstrated constructs of object perspective, but failed to 

incorporate constructs of process perspective and facets of the algebraic representations. For instance, Marie 

demonstrated this as she failed to coordinate process perspective constructs of the algebraic representation 

within her solution methods to determine an appropriate ‘y’ coordinate for point E. This led her to employ 

approximation methods as she suggested the following: “Since E is (5, y1) we know by looking at the graph that 

F is (5, y2) since we know B’s coordinates are at (0, -2), E appears to be at (5, [-]3)”. In essence, prospective 

teachers who exhibited disconnected and constrained conceptions failed to exhibit a flexible understanding of 

the constructs of process and object perspectives.  

 

Prospective teachers who demonstrate flexible conceptions may be better equipped to analyze varied students 

conceptions in this domain. As mathematics educators, we must consistently question this hypothesis. For 

instance, do these teachers possess understandings flexible enough to move beyond the constructs of their 

conceptions to adequately teach according to students’ diverse conceptions? With regard to teachers who exhibit 

disconnected or constrained conceptions, we must ask similar questions. For instance, how will their failure to 

coordinate information concerning process and object perspectives and algebraic and graphical representations 

inhibit their pedagogical attempts? Will they perform tasks by only utilizing constructs aligned with the 

constructs of their approaches? Research accentuating the nature of associations between teachers’ content and 

pedagogical content knowledge with respect to translations is needed.  
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